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ABSTRACT

Viscoelastic materials are extensively used to damp flexural
vibrations of metallic structures; it has been known for some time
that the energy dissipation due to shear strain in the viscoelastic
layer can be increased by constraining it with a stiffer covering
layer. In this report we will discuss a method for increasing this
damping by cutting the constraining layer into appropriate lengths.
The analysis for a single layer of this treatment is relatively
straightforward. The damping can be increased still further by
using several layers; in this case the analysis is based upon effec-
tive complex elastic moduli of an equivalent homogeneous medium.
One result found from this analysis is that, for optimum spacing
of cuts, the damping depends primarily upon the stiffness of the
constraining layer and only slightly on the shear modulus of the
viscoelastic layer. Experimental data is presented for comparison
with the theoretical predictions.

This abstract is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of the Metals and Ceramics Division (MAM), Air Force Materials
Laboratory, Wright-Patterson Air Force Base, Ohio 45433.
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I

INTRODUCTION

This report discusses the optimization of constrained visco-
elastic layer damping for engineering structures such as beams,
columns and plates. For such structures, the amount of damping
for a given viscoelastic layer depends on the stiffness of the con-
straining layer. It also depends on an effective length for the
constraining layer; this effective length may be related to the
bending wave length, as Kerwin [i]* did, or it may be created by
cutting the constraining layer at regular intervals as was shown
by Parfitt [2]. Lazan et al [3] showed that the amount of damping
can be increased by using alternately anchored multiple layer treat-
ment; in this report we show that, when properly assembled, the
constraining layers need not be anchored. An analysis, based on
technical theory, for finite length and thickness of treatment is
presented and the predictions of this theory are compared with
experimental results for one to eight layers on a cantilever beam.

Viscoelastic damping layers can be used on the surface of
structural members, so that under cyclic loading the viscoelastic
layer experiences the cyclic extensional strains of the surface
of the member [4,5]. In case of free viscoelastic layers, the
shear strain and the dilatation in the viscoelastic layer are of
the same order. If the viscoelastic layer is constrained by a
stiff covering layer it experiences large shear strain and rela-
tively small dilatation when the member to which it is attached
is strained [5,6]. Since most of the energy dissipation is caused
by shear deformation and almost none by dilatation [5], constrained
viscoelastic layers are therefore capable of higher damping than
unconstrained viscoelastic layers.

Kerwin [1] analyzed the damping of a composite structure with
an infinitely long damping layer subjected to sinusoidal variation
in bending moment. He found that the calculated damping factor
depends on the wave length of bending waves in the damped structure
as well as on the material properties and the geometry. Parfitt [2]
determined the change in damping caused by cutting the damping
tape at regular intervals; his analysis is valid only for materials
with small loss coefficient since he neglected the difference between
the absolute value of the shear modulus of the viscoelastic material
and its real part. Lazan [3] gave an analysis of an alternately
anchored multiple layer surface treatment which was developed for
increasing damping.

In this report we consider the case of finite length surface
treatment of an engineering structure with uniform surface strain and
cyclic loading conditions. The constraining layer of the surface
treatment is cut into appropriate lengths. If the constraining
layer is very long, the shear stress near the ends induces the same

Numbers in brackets designate reference at the end of this report.
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axial strain in it as in the basic structure and thus there is no
shear in the viscoelastic layer away from the ends and the damping
is small. If the length of each element of the constraining layeris very short, it exerts no constraint on the underlying viscoelastic
layer, there is little shear strain and the damping is small. Atsome finite value for the lengths of the elements of the constraining
layer, the damping is a maximum.

An analysis based upon the technical theory of elasticity isdeveloped in a straightforward manner for a viscoelastic layer
constrained by a single stiff layer cut at appropriate intervals.
For multiple layer surface treatment, there are interactions betweenthe constraining layers and the viscoelastic layers on each side.
The governing equations of equilibrium can still be written for eachindividual layer, but to solve this set of equations for a large
number of layers would be very tedious. In order to simplify theanalysis for the multiple-layered treatment, we replace a typical,
repetitive, volume by an equivalent homogeneous material with thesame force-deformation relationship. A longitudinal elastic modu-
lus and a transverse shear modulus is found for this equivalent
material in terms of the actual physical properties and geometry ofthe typical volume of the original composite. This equivalent anal-
ysis gives valid results if the composite has dimensions which are
large in comparison with those of an element of the constraining
layer ana the strain in the basic structure does not vary too
rapidly with length.

2



II

SINGLE-LAYER THEORY

The damping of a mechanical system is given in dimensionless
form by the loss coefficient, 17s , which is the ratio of the energy
dissipated to the energy stored in the system. That is:

(AW)s
2T7) T (W)s

where (AW)s is the energy dissipated per cycle and (W)s is the
energy stored. For single degree of freedom systems, ns is sim-
ply related to the common measures of damping, such as logarithmic
decrement 8 , and damping ratio • . [73

7T

In this study, we apply constrained damping layers to both
surfaces of the basic structure. This will give us a symmetric
configuration which is simpler to analyse and the general result
will be the same as for a single surface treatment. We assume that
all of the damping in the constrained viscoelastic layer is attrib-
utable to shear strain and the resultant energy dissipation. The
ability of the constraining layer to induce shear strain in the con-
strained layer without itself experiencing excessive stretching is
one of the important characteristics of the damping configuration.

In order to study the interaction between the axial strain in
the constraining layer and the shear strain in the constrained layer,
we consider the case of the constraining layer cut at regular
intervals. (Fig. 1)

CONSTRAINING
L = nL LAYER

SLi / /-CONSTRAINED
2 VISCOELASTIC

I I LAYER

BASIC
STRUCTURE

FIG. (I) COMPOSITE STRUCTURE WITH SURFACE

TREATME NT.
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The following assumptions are made in the analysis which
follows:

1. The thicknesses of the constraining layer and of the
constrained layer are very small compared to that of the
basic structure, thus the bending effects in these layers
are neglegible, so that the constraining layer is sub-
jected to tension only and the constrained layer is sub-
jected to shear only.

2. We assume linear behavior of the viscoelastic material;
complex notation can be used for its shear modulus

*I 
It IG =G1 + iG = G, (l+i 7 G 1 (COSQ + i sing)

where the asterisk indicates a complex quantity and

G is the elastic or storage modulus
I$

G is the loss modulus
-i

Q = tan 1G

7 G is the loss tangent of the viscoelastic material.

3. The constraining material is elastic and dissipates no
energy. Its Young's modulus is purely real.

Io I
E2 = 0 and E2 = E2

4. Poisson ratio effects are negligible and the one-dimensional
problem only is considered.

5. The axial strain is uniform at the interface of the basic
structure and the viscoelastic layer.

6. Uniform shear strain is assumed through the thickness of
the viscoelastic layer.

7. Uniform normal stress is assumed through the thickness of
the constraining layer.

8. The elastic moduli of the viscoelastic layer are small
in comparison with those of the constraining layer.

4



y
i_ ~LI

0 x

(0) BEFORE DEFORMATION

(b) AFTER DEFORMATION

dx -

T - u(x)

T- El 
U0o(X)

(C) FREE -BODY DIAGRAM OF AN ELEMENT

FIG. (2) TYPICAL ELEMENT OF CONSTRAINED VISCOELASTIC

LAYER APPLIED TO A BASIC STRUCTURE.
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From the equilibrium of an element of the constraining layer
(Fig. 2-c), we havef, 2 -dy.dx = T-dx

or

f2 0-2. dy = T (1)

02(T2-dy is the total force acting on the cross section of the

constraining layer. If we let 32 be the average normal stress in
the constraining layer, then

ft2f -2 dy 0= 2 ° 2 . (2)

Substituting Equation (2) into Equation (1), the equilibrium

equation becomes:

x t2 =T . (3)

The stress-strain relation in the constraining layer is:

au
2 E2 ax (4)

since we have assumed a one-dimensional problem.

The shear stress-shear strain relation for the viscoelastic
layer is:

_F* = ,*T=G1 YT

Since the shear strain in the constrained layer is constant in y:

* U-Uo

U• Uo (5)
T =G, t(

From assumption (5),

Uo Eo X
6



where E0 is the uniform strain in the basic structure varying
sinusoidally in time due to flexural vibration.

Substituting Equations (4) and (5) into Equation (3)
we obtain the differential equation

•2 a2U*
0  ax 2 a - U -EoX (6)

whe e o :( ,* E2 ) 1/2
where B. = tgt2 " ) is a system characteristic which has
the dimension of ý'ength.

It is convenient to use a local coordinate system for which
the origin of the abscissa is at the center of one element of
the constraining layer; the origin of the ordinate is immaterial
for this analysis, and it may be taken at the interface of the basic
structure and the viscoelastic layer. (Fig. 2-a).

The boundary conditions for one element of the constraining
layer are

U 0 AT X +L
x 2 (7)

since there is no normal stress at the ends.

The general solution of Equation (6) is:

U(x) = EoX + A, SINH-- t A2 COSH-o

0 BO

A1 and A2 are determined by the boundary conditions at X= +L'

(Equation (7))

Eo BO*

A, COSH A2  0

thus
x

SINH -
U"(x) E0 [x-B -OSH J(8)

The energy dissipated per cycle per unit volume of a material
in uniform shear is the area within the shear stress-shear strain
hysteretic loop. Since we have sinusoidal motion, the time varia-
tion of the shear strain may be written:

y(t)= RE(/*e icut)
7



where Y is complex. Then

T(t) = RE( G, X e Wt)

The energy dissipated is

R~E (Tdx) RE (G d ) T I

where G1  = G1  + i G1

Since we have assumed that the shear strain is uniform through
the thickness of the viscoelastic layer, the energy dissipated per
cycle per unit length and width is:

d (AW): 71 t, G," X 2

Since U - No

X t,

then, from Equation (8)

x
* SINH -

t, COSH -2--o

and

2 B 12
It 2O SINH'B

d(AW)z=Vt 1 G, ti 2 B0  COSHL, (9)

Is It

Writing G1  in the form, G G 1sing in the definition of B and

using the trigonometric identities for the functions sinh and cosh
of a complex argument

2
271SN8-E t 2 E2  N2 (X e 2  91

d(AW)= L, NL)+OSH COS_ [SIN, SNH'- COST--)].

8



This expression can be integrated in explicit form over the length
of one element of the constraining layer:

L,

AW= f d(AW) dx

2
VFSINeE, t2 E2  Bo L, e Be

LS 6 [__SINH(_ COS-.)- %__ .SIN(. SIN-)]
COSB(--1 SIN2-)+ [22 2 (10)

Letting the dimensionless ratio:

Li
Bo

AW becomes:

' SINH(C COSf)S1N2 SIN(wrSINR)-COSQ

AW =27TEo t2 E2 L," L COSH(u.0COSe) + COS(csr.SIN-) ]
This can be made dimensionless by dividing by a nominal energy
appropriate to the system:

I 2
WNOM.= 2•-E E2 t2 L, (12)

This would be the energy stored in the constraining layer if the
whole layer were strained by amount Eo . With this definition we
have a dimensionless loss coefficient

I I SINH(A)-SIN " SIN (BY COS 1
SAW -4 7 '. - .22( 3

- WNOM. UT - COSH(A) *t COS(B) J
9 9

where A = (A- COS e and B = u"SIN e and 9 is the loss

angle of the viscoelastic material:

TAN = 77?G
9



In Equation (13) T, is a function of u and 776 only.
7?, is plotted as a function of wr in Fig. (15)* with 77G as a

parameter. Figure (15) shows that for maximum damping

L- = 3.28

Bo

which indicates that for a given viscoelastic material and con-straining layer, the length of each element of the constraining
layer, L1 , is 3.28 times the characteristic length of the systemfor optimum damping. Using Equations (12) and (13), we can
write AW in the form

AW- E2 E t 2 (14)I•W2 = 0 2 ,214

a L

Y

FIG. (3) CANTILEVER BEAM WITH SURFACE TREATMENT.

In order to compare with experimental results, we consider the
case of a cantilever beam subjected to sinusoidal flexural vibration
with small deformation, Fig. (3); the strain at the interface is

2

2 dx 2  
(15)

where d is the thickness of the beam and d2y/dx2  is the curvature
of the beam. Substituting Equations (14) and (15) into

(AW)L = 2 (AW).dx
a L,

Figures 15 through 2l are graphs which appear on pages 39 through 45.

10



we have the energy dissipation per cycle in the constrained visco-
elastic layer to be:

2 0 + L d 2y

(AW)L , E2 t 2  (-• .dx (16)

The factor 2 appears before the integral sign because there is

surface treatment on both faces of the basic structure.

The maximum energy stored in the system is

(W)s 2 f( )2 dx

(17)

Ebd-3f t d 2y 2d
S2 4 X 2 -)x- -

where is the Young's modulus of the basic material. From Equations

(16) anB (17) we obtain the modified loss coefficient of the system:

O+L d2y_2
(AW)L_ 3E 2 t 2  fa ( dx 2 )

7L 27r(W)5  "VEb d f d (18)
(o dx 2 )

The vibratory shape of-a uniform cantilever is [8]

y(x)= COSH XX - COS XX - (SINH XX-SINXX)

and its curvature is

d2y

d 2y [COSH XL + COS XX SINH XX + SIN XX)]

SINH Xt - SINX(.
where X I = 1.875 and X C forGOSH XI + COSt for

the fundamental mode of vibration. In order to compare with the
experimental results, we can substitute Equation (19) into Equation
(18) and evaluate the integrals explicitly. The modified loss
coefficient of the system, 'L • can then be found in terms of '7,

11



(Equation (13)) and the geometry and material properties of the beam
and the constraining layer.

Equation (18) shows that the loss coefficient of the system
depends on the stiffness of the constraining layer and the material
property of the basic structure. It does not depend explicitly on
the shear modulus of the constrained viscoelastic material. The
above integral is evaluated for an explicit case in Section IV and
the results are compared with measured values.

12



III

Multiple - Layer Theory

The amount of damping in structures studied in the previous
section can be increased by applying more than one constrained
viscoelastic layer to the surface of the basic structure as shown
in Fig. (4).

TYPI CA Ly

VOLUME

m(t, + t2 )

x

L n L, L n L,

FIG. (4) MULTIPLE LAYER SURFACE TREATMENT.

If there is more than one constrained viscoelastic layer,
there are viscoelastic layers on both sides of the constraining
layer and interactions are induced between them. The governing
equations of equilibrium can still be written for each individual
layer, but to solve this set of equations for a large number of
layers would be tedious. For convenience, we replace a repetitive
element which is typical of the multiple-layered treatment by an
equivalent homogeneous orthotropic material with the same force-
deformation relationship. The equilibrium condition for this typical
volume is shown in Fig. (5).

13



y y

t2 /2

t ,1/2 x (:oX
t,/ li 0 ///////I

t2 /2 4

2

(a) BEFORE DEFORMATION (b) AFTER DEFORMATION

0F- 7 + _a2.dxTT ----- X6

dx T

(C) FREE-BODY DIAGRAM OF AN ELEMENT

FIG. (5) EQUILIBRIUM OF A TYPICAL VOLUME.

We follow the same assumptions made for single layer analysis
in Section II. From the equilibrium of an element of the visco-
elastic layer we have the differential equation of equilibrium in
the x-direction:

x eY

14



Since the strain for the constraining layer, E 2 , is of the
same order as the strain for the viscoelastic layer, E , and

E2 >> E, (assumption (8)), then 02 >> 0 , and c, is
negligible (assumption (1)). Then

a" - 0 ora 0 (20)

From assumption (4) the deformation in the y-direction is negligible,

Y-Y

and Equation (20) becomes

2

aY a Y2 0

With these assumptions, the deformation, u , in the x-direction
must be linear in y.

From Fig. (5-b) the axial deformation is anti-symmetric, i.e.,

U(xy)=.-U(-X,-y) ,

we can write u(x,y) in the form:

U (x,y) = y. fl(x) N f2 (x) (21)

If f 1 (x) is symmetric in x and f 2 (x) is anti-symmetric in x,
Equation (21) is the most general anti-symmetric function which
is linear in y. From Equation (21),

Y(X )= f,(x) . (22)

Substituting Equations (21) and (22) into the equation of
equilibrium of the constraining layer

a-02 t2  - T
ax 2

and using the stress-strain relations for the constraining layer
and the viscoelastic layer

2 = E2 a U ( 2x ,

15



and T =G ,

we get

ttE-2• f, I(x) - f,(x) -E 2  ' (23)24G* 2GI (23)x

The left hand side is symmetric by definition, therefore the
right hand side must be symmetric. But f 2 "(x) is anti-symmetric
unless it is zero. Equation (23) is therefore:

I L 2  "f I(x) - f(x) (24)

where L = ( tt 2  2 is a system characteristic which has

the dimension of length. The symmetric solution to Equation (24)
is

2Xf (x) A, COSH * (25)

'I

Since f 2 (x) = 0 and f 2 (x) is anti-symmetric,

f2 (x) = A2 X (26)

Substituting Equations (25) and (26) into Equation (21)
we get:

S tt 2X
U (x k A, "- COSH'jo + A 2 X (27)

The constants A1 and A2 are evaluated from the boundary conditions:

(i) Stress at (L t, ) is L)4 2

8U* (L t, :
ax 4 '2 -- 2

16



(ii) The end L, I) is stress free

U*u(LI ti
ax 4 L,

We obtain

ATo Lo COTA, 2E 2 t' SINH L A2 2E2

so that Equation (27) becomes

U:(x tI) (To x + LOSH 2 ] (28)2x 2E2 [ 2SINH

This is the deformation in the constraining layer in the x-direction.

We now define an equivalent homogeneous medium with the same
average deformation as the composite non-homogeneous material. For
thin layers, 0-y is negligible; the effective moduli for Ox and
Txy are:

aE = EE E

and TE = G E YE

EE is the total displacement over the quarter length divided
by L,/4 (Fig. (5-b)) and YE is the average displacement in one
thickness of the viscoelastic layer divided by the thickness (t 1 +t 2 ).

The effective stress is

( CTo t

TE - 2 (t,+ t 2 )

and the effective strain is

7-)7
•E =Li

4
Evaluating Equation (28) at X:

14

EE 2E 2 ~~iO~*

17



where a

Therefore,
E*

EEE

t2  )I COT . -(29)=E2(ýt,, +t2 )- [I+ y COTHa ]j

is the effective Young's modulus of the equivalent homogeneous
material.

Since the equivalent homogeneous material has the same force-
deformation relationship as for the typical volume of the multiple
layer treatment, the effective shear stress is:

* U*(x , )
TE G, t2

and since
* u*(x, •1

"t,' t 2

then *G - TE

* tI+ t2

=ti (30)

This is the effective shear modulus of the equivalent homogeneous
material. Equations (29) and (30) show that the effective
moduli of the equivalent homogeneous medium are determined by the
dimensions and material properties of the constituent layers of
the non-homogeneous material.

The free-body diagram of an element of the equivalent homogene-
ous material is shown in Fig. (6).

18
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L L

H 
ý x

TET+ a

dycx (T * F dx

dx 
T

FIG. (6) EQUILIBRIUM OF AN ELEMENT OF THE

EQUIVALENT HOMOGENEOUS MEDIUM.
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The equation of equilibrium for the element is:

a]x aY (31)

The stress-strain relations are:

-E =EE x

and T * = G * a-
E E a

and Equation (31) can be written as

+ C* a 0 (32)

GEwhere C*2: G

Using the coordinate system as shown in Fig. (6), the boundary
conditions are:

(i) The strain at the interface is uniform:

U (x , 0 ) = EoX

(ii) The shear stress on the top surface is zero:

ay* (X,H)= 0a *

(iii) Normal stresses at the ends vanish:
aU*( L y

The general solution to Equation (32) satisfying boundary
conditions (i) and (ii) is:

U*(x Iy) =EOx + ± N kC ek)w I O ) (33)

* ~A~ INk B x)sN 2 H Y
k ODD

Substituting Equation (33) into Equation (32) we find

B 2H
7T
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and Ak is determined by the boundary condition (iii)

E+C* k--COSH( k7TC*L k7-
EoL+ A k 2-- H- 4H ).SIN(2Hy) =0

k ODD
or

Eoy A k 7-k7C*L ) SIN( kCO[*-Ak )]-SIN( k ' Y)
k ODD

where

7TkC*L 2E0 rCH Ok7Tr-Ak- COSH( 4 C-HJ0kQ2H SIN(--y).dy

is the Fourier sine coefficient of the function Eo
Since

f oH SN(k7T-)d= 
2H

f 2H OT

8HEo
Ak C *k 2 7T2. COSH (k7TCL)

4H
The displacement solution (33) becomes then

. (kwc*xx 8Hs, SN(kr* ) k
C(Xky)= CEOZSH SIN(k Y

kODD Y). (34)

The strain energy in the surface treatment is the work doneon it through the interface between the basic structure and thetreatment. Since the only force acting on the treatment is theshear stress at the interface, the strain energy is the work done
by this shear force:

L

w = TE (WT(X 0) U(xO). dx
2 L 

(35)

2f2R (xiO). U*(xO). dx
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since the surface treatment is symmetric about x = 0 (Fig.(6)).

Substituting the stress-strain relation

TEGE E

where

/E k. kc•4 Eo SINH (-•r X) k )

Z c*kr. COSH(kWc*L) .cOs( 2H
k ODD 4H

and U (XO) = E0X , for uniform strain at the interface,
into Equation (35) and integrating along the length, we have

2 1-* F I . IL~,8* (36
W =8EOH LEE [ - k AN WJJ(6

kODD

where L 7T- n L, 7T

4H-- m ti+ t2  4 C

and n = is the number of individual elements of the constrainingL 1  layer,

m = H/(t 1 +t 2 ) is the number of layers of the surface treatment.

The energy dissipation per cycle is then

AW = 7T- IM (W*)
or

W 8TE0 H LE2 ( ,+t2 IM + I +WCOTH ]-

. z 0 T2k18 TANH( k/9") (37)

kODD

This result is the same as would be found by evaluating

AW = 7T- GE. 2 • dV
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as was used for single layer analysis.

Equation (37) can be made dimensionless by dividing by a
nominal energy appropriate to the system

12 2_
WNOM = "2" Eo E2 •H.L- ( t 2  ) (38)tj+ t2  (8

The dimensionless loss coefficient is then

AW
WNOM.

. [ I-M _OT C TANH(kig)
=167T I I÷C T -• I. k27r2 [,8 (3--9-)

k ODD - }
Equation (39) indicates that the dimensionless loss coef-ficient 77, is a function of a* and 8* * From the definition

Of a*

Li Li 8 8 (
a 2 Li( COST- I SIN.(COS - (40)

where L,Lo

and TAN8 97G

Also • L 7V n Li V7T*

- 4m t+ t2  4

where

C GE2

t 2I * t2 "+ - COTH Y
- L*

using Equations (29) and (30). Then

. nl7T ,[ Ic,•
.=L"-"-- Q[ + c-o COTH (41)
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Figures (16) to (19) show1 l, as a function of C for different 77

with n/m as a parameter. In the calculations for these plots only
five terms were used in the series in Equation (39). The error
involved in truncating after five terms of the infinite series de-
pends upon the values of C and n/m. This error is a minimum when
is optimum and appears to decrease at optimum for n/m larger or
smaller than 1. The following table shows the percentage difference
between the 5 term and the 15 term approximation; the maximum dis-
crepancy for optimum • is about 4% at n/m = 1

n0.5 4.0 16.0

0.1 36.0% 7.0% 0.9%

1.0 5.6% 4.8% 15.0%

10.0 3.0% 2.8% 19.0%

For comparison purposes, we can derive the loss coefficient
for the case of a cantilever beam in flexural vibration with small
deformation in the same manner as in Section II; the modified loss coef-
ficient for the system is: O+L d 2 2

3 E2 m~t2  Jo fa 'P4)dX2  (42)

77 t (dy 2)dL I V Eb d fo- ddx2 )2dx

This is exactly the same as Equation (18) with t 2 , for single
layer treatment, replaced by mt 2 for multiple layer treatment.
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IV

Experimental Results and Comparison with Theoretical Predictions

Vibration decay measurements were made on a number of different
cantilever beams each with the same total length of the constrained visco-
elastic layer damping treatment but with different element lengths
for comparison with the loss coefficient '7L given by Equation (18)
for a single layer. For the multiple layer treatment, one through
eight layers were usedjeach with the same number of elements The
test configuration used in this experimental program is shown in
Fig. 7).

7

2 4 2

I|

00007

0. 002"

FIG. (7) TEST CONFIGURATION OF SINGLE LAYER SURFACE

TREATMENT.

The basic structure was a C1018 steel beam 7 inches long, ½ inch
wide, and 1/8 inch thick. 0.0007 inch thick aluminum foil was
used as constraining layer. For the constrained viscoelastic layer,
we used No. 466, 3M adhesive. Material properties of this adhesive
were found from the master curves furnished by 3M Company. 71G = 1.5,

G, = 250 at a frequency of 66 cps. and at room temperature
were used in calculations. The surface treatment was applied to
the middle 4 inches of both faces of the basic structure. The test
specimen was clamped at one end to a massive base isolated from the
floor by foam rubber springs. The free length of the specimen was
6 inches. An accelerometer attached to the free end of the canti-
lever beam gave an electric signal proportional to the amplitude of
free vibration. A magnetic driver was used to drive the beam at
the required amplitude (Fig. 8).
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41

ACCELEROMETER

MAGNETIC

BASE DRIVER

FIG. (8) SPECIMEN MOUNTING.

After steady state resonant vibration of the required amplitude
was reached, power to the driver was cut off and the logarithmic
decrement was measured. The equipment used for the measurement
of decrement is shown in the block diagram (Fig. 9).
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ACCELEROMETER [

MAGNETI'C[?
DRIVER

McINTOSH 40
AUDIO

AMPLIFIER

LKaH 420-A
ILOW FREQUENCY

HPI130 [OSCILLATOR

OSCILLO
-SCOPE

B a K 2305 KISTLER S/N 633

F;;9 CHARGE

LEVEL RECORDER AMPLIFIER

HP521A

FREQUENCY

COUNTER

FIG. (9) BLOCK DIAGRAM OF INSTRUMENTATION

(a) The low frequency oscillator and audio amplifier provided
power to the magnetic driver to drive the specimen at its funda-
mental natural frequency.

(b) The accelerometer gives an electrical signal proportional to
the amplitude of vibration of the tip.

(c) The charge amplifier amplifies the signal for counter readings,
oscilloscope monitoring and recorder input.
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(d) The counter reads the natural frequency of the vibrating beam.

(e) The voltage from the preamplifier is displayed on an oscillo-
scope to indicate the stress level of the vibrating beam and to mon-
itor the wave shape of the signal.

(f) The level recorder gives the envelope of the decay curve in a
logarithmic scale. The slope of this curve is directly proportional
to the loss coefficient

77B0R77 - loge I0 d dB d(dB)
s 207Tf dt dt

is the slope of the decay curve in dB per second. Since the energy
dissipation in the constrained viscoelastic layer can not be measured
directly, we must find it from the energy dissipation in the bare
specimen without surface treatment, (AW)8 , and the energy dissipa-

tion in the test specimen with surface treatment, (AW)s . The

energy dissipation in the constrained viscoelastic layer alone is

the difference between these two, (AW)L = (AW)s - (AW)B

For very thin layer surface treatment, we assume that the maximum
energy stored in the system, is the same for both the bare specimen
and the test specimen with surface treatment, i.e., (WS) = (W)B
Then the loss coefficients for these two cases are:

S = (AW)s AND 77 - (AW)B - (AW)B
2 V 27Ws 2 7T(W)B 27T(W)s

Since the modified loss coefficient of the viscoelastic material in
this system is defined as (18bis)

(AW)L
L- 227T(W)

it is the difference between the loss coefficient of the bare spec-
imen, 77B , and the loss coefficient of the test specimen with
surface treatment, 7S

L = '7S-- 7?B

Using the measured values of 77B and 77S , and Equation (18)

S 7TEb d •).dX

'77 - L 3E 2 " t2  fU+L d x (43)OfL dx2y

together with Equation (19) and the dimensions and material prop-
erties of the test specimen used, the equivalent loss coefficient
for uniform strain is:

-3
77 0.803X10 77S_ 77B) (44)
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The constraining layer was cut at regular intervals and measurements
were made for a number of different values of L The values ofthe dimensionless loss coefficient 77, found frKm the measured (7$-7B)are plotted in Fig. (20). For the configuration used, t1 = 0.002 in.,t.= 0.0007 in., G1 250 psi, E 2 = l0 x 10 psi; therefore L = 0.236ii.A theoretical curve for 7i as found from Equation (h3) using
77= 1.5 is shown in the same figure.

For multiple layer treatment more than one constrained visco-elastic layer is applied to each of the surfaces of the basicstrucutre. Each subsequent constraining layer overlaps the previous
one; in this particular test a length of L = 2/3 inch was used foreach element of the constraining layer excipt at the ends. (Fig. 10).

6 4

0.0027m

2"I 2

FIG. (I0) MULTIPLE LAYER SURFACE TREATMENT.
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The measured loss coefficient, ( 77s- 7B), is plotted against
the number of layers, m, in Fig. (21). From equation (42), using
the dimensions and properties of the test specimen (42)

-3
(7 -- 7B )1.24x 0 .m.7 1  (45)

where n1 is found from Fig. (18). L0  is still 0.236 inch,
and Ll is 0.667 inch, therefore 6 = 2.82. In this case n
and number of elements, is 6.5 and m is the number of constraining
layers. For m = 1, 77, is given by single layer analysis. Fig. (20)
(7s-78) is plotted in Fig. (21) for m = 1 to 8 for values calculated
from Equation (45). Since the values of 71, for m >_ 2 are not found
by the same method as that for m = 1, the points do not fall on a
smooth curve.
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V

DISCUSSION

In the analysis presented above, it has been assumed that
the viscoelastic layer has a much smaller elastic modulus than the
constraining layer and that the constraining layer is non-dissipative.
The geometric effects which change the overall damping primarily
influence the distribution of strain and extension in the constraining
layer and these interactions may be best understood by examining
the appropriate functions in some detail.

For the single layer treatment, the axial stress in the con-
straining layer is:

XE 2 aUx(T =Eý ax
where U* is the displacement in the x direction. Using Equation
(8), we have

x• =E2 Eo [ - SH 2
2=EE0Li (46)

COSH

The shear stress in the viscoelastic layer is found from Equations
(5) and (8):

* X
E,* Bo 0 SINH-

T G, t COSH L

Figure (11) shows 0iand //( G• and t

as functions of x with L as a parameter. For large L , the cen-
tral portion of the constraining layer undergoes the sme axial
strain, C@ , as in the basic structure, there is no shear in the
viscoelastic layer away from the ends and the damping is small.
(Fig. lla). For very small L , the elements of the constraining
layer exert no constraint on ihe underlying viscoelastic layer, there
is little shear strain and the damping is again small (Fig. llc).
At some intermediate value of L,, the integral of the shear strain
energy integrated over the length reaches a maximum value per unit
length (Fig. llb) and the relative energy dissipation is maximum.

The normal stress in the constraining layer and the shear stressin the viscoelastic layer for multiple layer treatment are found
from Equation (28):

2X
SINH 2XCTo [+Lo(8

72 = E2 2 SINH Li (48)
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2X
r " G>o . Lo COSH-jo
T=G2E2 t, SINH L, (49)

SIH2 Lý.

To compare these results with those for single layers, we need
the ratio between Oo and Co , Equation (29):

I
O- =0 P+ COTH Ct•02E2

where a -
2L0

Equations (48) and (49) can then be written as

-1SINH 2X50

E2E- [+- COTH a*] - [1+ SHa(50)

* -1 COSH2X
T I t COTH *1 CT

o Li (51)G, tO SINH -Lo

The existence of an optimum value of L for maximum damping fol-
lows from the same argument as for the single layer treatment.
Equations (50) and (51) are plotted in Fig. (11) for comparison
with single layer treatment.

For a given constraining and viscoelastic layer, there is an
optimum length for the elements of the constraining layer. While
the optimum length increases indefinitely as the number of layers
increases, there is a minimum value as the number of layers decreases.
This minimum optimum length is about half of the optimum length for a
single layer of exactly the same geometry and material because the
assumptions of the multiple layer theory make the viscoelastic layer
effectively stiffer. The geometry and boundary conditions of the
two comparable composite configurations are shown in Fig. (12).
For both problems, we have assumed that the strain is uniform at
y = 0 which is the interface of the basic structure and the visco-
elastic layer in the single layer case and is the middle surface of
the viscoelastic layer in the multiple layer case. In the single
layer analysis, t = 0 at y = (t 1 +t 2 ) and 0= ,o at x = 0, y = tI.
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In the multiple layer analysis, t = 0 at y = ½(t 1 +t 2 ) and o-=o

at x = L, y = tl/2; the only other difference is that u = Oat

x = 0, y 0 for the single layer but u 1 0 at x = 0 for
the multiple layer analysis. 

41 y

Li Y L, Li Y Li
2f ______2 4 _ 4

2 TT t 2 /2

-L _ _

tl E '° ti/2 •.X
Sx V/g///x

~Q~E_ _ _ t'/2

(a) SINGLE LAYER (b) MULTIPLE LAYER

FIG. (12) GEOMETRY OF COMPARABLE BOUNDARY VALUE PROBLEMS

To make a legitimate comparison, it is necessary to replace t by
2t and t2 by 2t in the definition of L * to obtain the valuý
of B* for the caie of the single layer t~eatment. That is:

I

L0 = 2 (t, t2_)2-2 Bo

or 2 L

SBo Lo 2

This is verified in part by the fact that the optimum element
length for the single layer case is 3.28 B0  while for large n/m
values in the multiple layer case it is about 1.7 L which is
about the same physical length if the previous convgntion is used.

The value of wr for maximum damping in the case of single layer
treatment is almost independent of the viscoelastic material used.
In the case of multiple layer treatment, the value of C for
maximum damping changes with the number of layers and so does the
length of each element of the constraining layer. It can be seen
from Fig.(18) that a given value of the dimensionless loss coeffi-
cient, 77, , for a given constraining and viscoelastic layer can be
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obtained either with a small L1 and few layers, m, or a large L1

and many layers. The maximum value of '
7 1 for optimum C does

not depend markedly on the number of layers which is given by
the ratio m/n. Thus from Equation (42) the modified loss coefficient
of the system, nL , is almost linearly proportional to the number
of layers if the element length is increased as the number of layers
is increased. In actual applications, it is not practical to use
different element lengths for different numbers of layers. If a
fixed element length is used for multiple layer treatment, the amount
of damping always increases with the number of layers but not
necessarily proportionally. The predicted values of ( '77-18) for
L1 = 0.667 inch and L = 0.236 inch are shown in Fig. (21) where
( 77S B ) is almost e~actly proportional to m for m = 1 to 15. This
linear relation will not hold for large m because 77, decreases for
large m for this particular geometry as shown in Fig. (13).

1.0

0.5

II I I I
0 10 20 30 40

FIG. (13) 77, AS A FUNCTION OF m

The multiple layer theory is valid if the element length of
the constraining layer is much shorter than the total length of
the surface treatment. If L approaches L, the strain at the middle
surface of the viscoelastic layer will not be uniform and assumptions
used in the derivation of the equivalent homogeneous material will
be violated and the damping will be overestimated.

In Equations (18) and (42) the shear modulus of the visco-
elastic material does not appear explicitly; the loss coefficient
of the system depends primarily upon the stiffness of the con-
straining layer and the strain energy of the basic structure and only
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indirectly on the shear modulus of the viscoelastic layer through
the element length ratio L /L . Viscoelastic materials with high
loss factors like 3M No. 446, usually have a shear modulus which
is very temperature dependent. If the element length, LI, is
chosen to be optimum for the center of the temperature range, the
system damping can be designed to be almost constant over a large
temperature range in spite of this. For example, if L is chosen
so as to make LI/Lo optimum at 65 0 F, 77, is still as gieat as one
half of its maximum value at 30°F and 110°F even though the shear
modulus changes by a factor of 30 to 1 over this same range. Fig.

(14) shows '7, as a function of temperature for 3M No. 466 with
G1 obtained from the master curve for f = 72 cps.

20
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0II I I II
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TEMPERATURE OF

FIG. (14) Th AS A FUNCTION OF TEMPERATURE.
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VI

CONCLUSIONS

The experimental results given in this report agree with the
damping predicted for constrained viscoelastic layers based upon
the assumption that the energy dissipation is caused primarily by
the shear strain in the viscoelastic layer. The effective elastic
modulus method used in the analysis of a multiple layer treatment
proved to be satisfactory for the study of laminated structures.
One important result found from the analysis is that, for optimum
element length of the constraining layer, the energy dissipation
depends primarily upon the loss coefficient of the viscoelastic
material, and the stiffness of the contraining layer and only in-
directly on the shear modulus of the viscoelastic layer.
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